
Package: swissknife (via r-universe)
September 16, 2024

Title Handy code shared in the FMI CompBio group

Version 0.41

Description A collection of useful R functions performing various
tasks that might be re-usable and worth sharing.

SystemRequirements C++11

Depends R (>= 3.5.0)

Imports BiocGenerics, BiocParallel, datasets, GenomeInfoDb,
GenomicRanges, graphics, grDevices, IRanges, KernSmooth,
matrixStats, methods, png, Rcpp, S4Vectors, stats, usethis,
SummarizedExperiment, utils, XVector, dplyr

Suggests Biostrings, BiocStyle, BSgenome, GenomicAlignments, Gviz,
knitr, QuasR, Rbowtie, rlang, rmarkdown, Rsamtools,
rtracklayer, SingleCellExperiment, SingleR, testthat, tidyr,
withr, wordspace, BiocManager

LinkingTo Rcpp

License GPL (>= 3)

Encoding UTF-8

LazyData true

RoxygenNote 7.3.1

VignetteBuilder knitr

URL https://github.com/fmicompbio/swissknife

Repository https://fmicompbio.r-universe.dev

RemoteUrl https://github.com/fmicompbio/swissknife

RemoteRef HEAD

RemoteSha bbfe1f9020d9a1ae2a582bbf3759a2b46499a469

Contents
swissknife-package . 2
addUtilsFunctions . 3

1

https://github.com/fmicompbio/swissknife

2 swissknife-package

annotateRegions . 4
calcAndCountDist . 5
calcPhasogram . 6
col2hex . 7
estimateNRL . 8
getGenomicTiles . 9
getInsertSizeDistFromBam . 11
getMappableRegions . 12
labelCells . 14
loadExampleData . 16
normGenesetExpression . 17
parsePkgVersions . 18
plotBitScatter . 19
plotGeneRegion . 20
plotPhasogram . 23
plotSelVarGenes . 24
prepareGTF . 25
readSampleTsvs . 26
sampleControlElements . 27
selVarGenes . 28
specificityScore . 31
valueToColor . 33
weightedMeanByID . 34

Index 36

swissknife-package swissknife - handy code shared in the FMI CompBio group

Description

swissknife is a collection of useful R functions performing various tasks that might be re-usable
and worth sharing.

Author(s)

Maintainer: Michael Stadler <michael.stadler@fmi.ch>

Authors:

• Charlotte Soneson <charlotte.soneson@fmi.ch>

• Panagiotis Papasaikas <panagiotis.papasaikas@fmi.ch>

• Dania Machlab <dania.machlab@fmi.ch>

• Fiona Ross <fiona.ross@fmi.ch>

Other contributors:

• Friedrich Miescher Institute for Biomedical Research [copyright holder]

addUtilsFunctions 3

See Also

Useful links:

• https://github.com/fmicompbio/swissknife

addUtilsFunctions Copy utility functions to package

Description

This function copies handy utility functions to a new script in a specified location. Currently, the
script contains the following utility functions:

• .assertScalar() - convenience function to check the validity of scalar variables.

• .assertVector() - convenience function to check the validity of vector variables.

Usage

addUtilsFunctions(outFile = "R/utils.R", copyTests = TRUE)

Arguments

outFile Character scalar, giving the path to which the script should be copied. The path
is relative to the root of the active project. If a file with this name already exists,
the function will ask for confirmation before overwriting it.

copyTests Logical scalar, defining whether to copy unit tests for the utility functions to
tests/testthat/test-<name>.R, where <name> is the base name of outFile.
If the target package is not yet set up to use testthat, the function will also run
usethis::use_testthat() to generate the required folder structure and add
testthat to the list of suggested package in the DESCRIPTION file.

Author(s)

Charlotte Soneson

https://github.com/fmicompbio/swissknife

4 annotateRegions

annotateRegions Annotate regions.

Description

Annotate a GRanges object with sets of reference GRanges or GRangesList objects, with respect to
overlaps and nearest neighbors.

Usage

annotateRegions(
x,
hasOverlap = list(),
fracOverlap = list(),
numOverlap = list(),
nearest = list(),
ignore.strand = TRUE

)

Arguments

x The GRanges object to annotate.
hasOverlap Named list with GRanges or GRangesList object(s). For each list element,

a logical vector "X.hasOverlap" will be added to the mcols of the result, with
TRUE for each tile that overlaps any region in that element. "X" is obtained from
names(hasOverlap).

fracOverlap Named list with GRanges or GRangesList object(s). For each list element, a
numeric vector "X.fracOverlap" will be added to the mcols of the result, with
a value between 0 and 1 giving the fraction of bases in a tile that overlaps with
any region in that element. "X" is obtained from names(fracOverlap).

numOverlap Named list with GRanges or GRangesList object(s). For each list element,
two numeric vectors "X.numOverlapWithin" and "X.numOverlapAny" will be
added to the mcols of the result, giving the number of ranges in that element
that are fully contained within a tile, or that overlap with a tile in any way,
respectively. "X" is obtained from names(numOverlap).

nearest Named list with GRanges or GRangesList object(s). For each list element,
two numeric vectors "X.nearestName" and "X.nearestDistance" will be added
to the mcols of the result, giving the name and distance of the nearest range in
that element for each tile. "X" is obtained from names(nearest), and the values
of "X.nearestName" from names(nearest$X). If multiple nearest ranges are at
the same distance from a tile, an arbitrary one is reported in "X.nearestName".

ignore.strand Logical scalar passed to findOverlaps when searching for overlaps between x
and reference regions.

Value

A GRanges similar to x, with annotations added to its metadata columns (mcols).

calcAndCountDist 5

Author(s)

Michael Stadler

See Also

getGenomicTiles that uses this function, findOverlaps and nearest in package GenomicRanges
used internally.

Examples

library(GenomicRanges)

x <- GRanges("chr1", IRanges(c(1, 12), width = 10))
tss <- GRanges("chr1", IRanges(c(1, 10, 30), width = 1,

names = paste0("t", 1:3)))
blacklist <- GRanges("chr1", IRanges(20, width = 5))
annotateRegions(x, hasOverlap = list(Blacklist = blacklist),

fracOverlap = list(Blacklist = blacklist),
numOverlap = list(TSS = tss),
nearest = list(TSS = tss))

calcAndCountDist Count frequency of differences between values in integer vectors.

Description

Given two ascendingly sorted integer vectors query and reference, calculate and count the differ-
ences between their elements that are greater than zero and less than maxd. The number of observed
distances d are reported in cnt[d], and maxd corresponds to the length(cnt). The function is
called by calcPhasogram, which provides a higher level, more conventient interface.

Usage

calcAndCountDist(query, reference, cnt)

Arguments

query first integer vector.

reference second integer vector. Distances are calculated from each element in query to
each greater element in reference.

cnt NumericVector to store the result in. The length of cnt defines the maximal
distance that will be included in the analysis, and new counts will be added to
the values of cnt.

Value

numeric vector cnt, where cnt[d] correspond to the number of observed distances d.

6 calcPhasogram

Author(s)

Michael Stadler

calcPhasogram Calculate phasograms (same strand alignment distances).

Description

Calculate the frequencies of same strand alignment distances, for example from MNase-seq data to
estimate nucleosome repeat length. Distance calculations are implemented in C++ (calcAndCountDist)
for efficiency.

Usage

calcPhasogram(fname, regions = NULL, rmdup = TRUE, dmax = 3000L)

Arguments

fname character vector with one or several bam files. If multiple files are given,
distance counts from all will be summed.

regions GRanges object. Only alignments falling into these regions will be used. If NULL
(the default), all alignments are used.

rmdup logical(1) indicating if duplicates should be removed. If TRUE (the default),
only one of several alignments starting at the same coordinate is used.

dmax numeric(1) specifying the maximal distance between same strand alignments
to count.

Value

integer vector with dmax elements, with the element at position d giving the observed number of
alignment pairs at that distance.

Author(s)

Michael Stadler

References

Phasograms were originally described in Valouev et al., Nature 2011 (doi:10.1038/nature10002).
The implementation here differs in two ways from the original algorithms:

1. It does not implement removing of positions that have been seen less than n times (referred to
as a n-pile subset in the paper).

2. It does allow to retain only alignments that fall into selected genomic intervals (regions
argument).

col2hex 7

See Also

estimateNRL to estimate the nucleosome repeat length from a phasogram, plotPhasogram to vi-
sualize an annotated phasogram, calcAndCountDist for low-level distance counting.

Examples

if (requireNamespace("GenomicAlignments", quietly = TRUE) &&
requireNamespace("Rsamtools", quietly = TRUE)) {
bamf <- system.file("extdata", "phasograms", "mnase_mm10.bam",

package = "swissknife")
pg <- calcPhasogram(bamf)
print(estimateNRL(pg, usePeaks = 1:4)[1:2])
plotPhasogram(pg, usePeaks = 1:4, xlim = c(0,1000))

}

col2hex Get hex color

Description

The function returns a color in hex form given a valid name of a color in R.

Usage

col2hex(col, alpha = 255)

Arguments

col a character, integer or vector of both types containing the names of the colors
or colors as integers.

alpha a numerical value in the range [0,1] or [0,255] that indicates the transparency
of the color(s). If the given values are between 0 and 1, they are mapped to be
between 0 and 255. An alpha value of 1 assumes the [0,1] range and provides
maximum color. The default is set to 255.

Value

a character or character vector with the hex colors.

Author(s)

Dania Machlab

8 estimateNRL

Examples

y <- rnorm(1000,0,1)
cols <- rep("red", length(y))
alpha <- seq(0,1,length.out=length(y))
hexcols <- col2hex(cols, alpha)
plot(1:length(y), y, bg=hexcols, pch=21)

y <- rnorm(1000,0,1)
cols <- rep("red", length(y))
alpha <- seq(0,255,length.out=length(y))
hexcols <- col2hex(cols, alpha)
plot(1:length(y), y, bg=hexcols, pch=21)

estimateNRL Estimate the nucleosome repeat length (NRL) from a phasogram.

Description

Estimate the nucleosome repeat length (NRL) from the frequencies of same-strand alignment dis-
tances (phasogram), e.g. generated by calcPhasogram. The NRL is obtained from the slope of a
linear fit to the modes in the phasogram.

Usage

estimateNRL(
x,
mind = 140L,
usePeaks = 1:8,
span1 = 100/length(x),
span2 = 1500/length(x)

)

Arguments

x numeric vector giving the counts of alignment distances (typically the output of
calcPhasogram.

mind integer(1) specifying the minimal distance to be used for NRL estimation.
The default value (140) ignores any distance too short to span at least a single
nucleosome.

usePeaks integer vector selecting the modes (peaks) in the phasogram used in NRL es-
timation.

span1 numeric(1) giving the smoothing parameter for de-trending loess fit (high pass
filter).

span2 numeric(1) giving the smoothing parameter for de-noising loess fit (low pass
filter).

getGenomicTiles 9

Value

A list with elements:

nrl the estimated nucleosome repeat length
nrl.CI95 the 95% confidence interval
xs smoothed (de-trended) phasogram
loessfit the de-noising fit to the de-trended phasogram
lmfit the linear fit to the phasogram peaks
peaks the peak locations
mind minimal distance included in the fit
span1 smoothing parameter for de-trending loess fit
span2 smoothing parameter for de-noising loess fit
usePeaks the peaks used in the fit

Author(s)

Michael Stadler

See Also

calcPhasogram to calculate the phasogram from alignments, plotPhasogram to visualize an an-
notated phasogram

Examples

see the help for calcPhasogram() for a full example

getGenomicTiles Get regions tiling a genome.

Description

Get sequential, potentially annotated regions of a fixed lengths (tiles) along chromosomes of a
genome.

Usage

getGenomicTiles(
genome,
tileWidth,
hasOverlap = list(),
fracOverlap = list(),
numOverlap = list(),
nearest = list(),
addSeqComp = TRUE

)

10 getGenomicTiles

Arguments

genome The genome to work on. Either a BSgenome object, a character scalar with the
name of an installed BSgenome or with a file path and name pointing to a fasta
file with the genome sequence, or a named numeric vector giving the names and
lengths of chromosomes.

tileWidth numeric scalar with the tile length.
hasOverlap, fracOverlap, numOverlap, nearest

Named lists with GRanges or GRangesList object(s) used to annotate genomic
tiles. See annotateRegions for details.

addSeqComp logical scalar. If TRUE and primary sequence can be obtained from genome,
also add sequence composition features for each tile to the annotations. Cur-
rently, the following features are included: percent of G+C bases ("percGC"),
CpG observed-over-expected ratio ("CpGoe").

Details

The last tile in each chromosome is dropped if it would be shorter than tileWidth. Generated tiles
are unstranded (*) and therefore overlaps or searching for nearest neighbors are ignoring strands of
annotations (ignore.strand=TRUE).

Value

A GRanges object with genome tiling regions. Optional tile annotations are contained in its metadata
columns (mcols).

Author(s)

Michael Stadler

See Also

tileGenome and annotateRegions used by getGenomicTiles internally.

Examples

library(GenomicRanges)

tss <- GRanges("chr1", IRanges(c(1, 10, 30), width = 1,
names = paste0("t", 1:3)))

blacklist <- GRanges("chr1", IRanges(20, width = 5))
getGenomicTiles(c(chr1 = 45, chr2 = 12), tileWidth = 10,

hasOverlap = list(Blacklist = blacklist),
fracOverlap = list(Blacklist = blacklist),
numOverlap = list(TSS = tss),
nearest = list(TSS = tss))

getInsertSizeDistFromBam 11

getInsertSizeDistFromBam

Tabulate insert sizes from paired-end alignments in bam files.

Description

Read and tabulate the insert sizes from paired-end alignments contained in one or several bam files.
By default, all properly aligned read pairs are included. Optionally, alignments can be restricted to
those in a specific genomic region (regions argument) or the number of alignments read can be
limited (nmax argument).

Usage

getInsertSizeDistFromBam(
fname,
regions = NULL,
nmax = NA_integer_,
isizemax = 800,
exclude = c("chrM", "chrY", "chrX")

)

Arguments

fname character vector with paths to one or several bam files. If multiple files are
given, insert sizes from all will be pooled and tabulated together.

regions GRanges object. Only alignments falling into these regions will be used. If NULL
(the default), all alignments are used.

nmax numeric(1) specifying the maximal number of alignments to read. If NA (the
default), the alignments in regions (if regions are not NULL) or in the bam file
will be used.

isizemax numeric(1) specifying the maximal insert size to report. Larger insert sizes
will be set to isizemax with on their number will be reported.

exclude character vector with chromosome names to be excluded. Alignments on these
chromosomes will be excluded. exclude will be ignored if regions is not NULL.

Value

integer vector with the number of insert sizes. The element at position i gives the observed
number of alignment pairs with an insert size of i. The number of insert sizes greater than isizemax
that were set to isizemax are reported in the attribute "ncapped".

Author(s)

Michael Stadler

12 getMappableRegions

See Also

scanBam used to read alignments.

Examples

if (requireNamespace("Rsamtools", quietly = TRUE)) {
bamf <- system.file("extdata", "getInsertSizeDistFromBam", "atac_mm10.bam",

package = "swissknife")
isize <- getInsertSizeDistFromBam(bamf)
attr(isize, "ncapped")
plot(isize, type = "l",

xlab = "Insert size (bp)", ylab = "Number of fragments")
}

getMappableRegions Get mappable regions of a genome.

Description

Given a k-mer length and the maximum number of allowed hits per k-mer, find all mappable regions
in a genome.

Usage

getMappableRegions(
genome,
genomeIndex,
kmerLength = 50,
maxHits = 1,
Ncpu = 2,
quiet = TRUE

)

Arguments

genome The genome sequence to work on. Either a BSgenome object, a character scalar
with the name of an installed BSgenome or with a file path and name pointing to
a fasta file with the genome sequence.

genomeIndex character scalar with the path to the bowtie index and prefix to align against,
in the form </path/to/index>/<prefix>, or the name of an installed Rbowtie
index package created by the QuasR package for an installed BSgenome pack-
age.

kmerLength numeric scalar specifying the k-mer length (width of overlapping windows in
genome), usually set to the typical read length for which to get the mappable
regions.

getMappableRegions 13

maxHits numeric scalar specifying the maximum number of hits (matches) of a k-mer in
the genome to be considered mappable.

Ncpu numeric scalar specifying the number of CPU threads to use for alignments.

quiet logical scalar indicating if progress information should be printed on the con-
sole.

Details

Sequences of all overlapping windows are extracted from the genome and aligned to the provided
genome index using bowtie with parameters -f -v 0 -a -B 1 -m maxHits. If no more than maxHits
hits are found, the window is defined mappable.

Value

A GRanges object with mappable regions. All plus-strand sequences in genome of length kmerLength
with their start (leftmost) position overlapping the GRanges object do not generate more than
maxHits hits when aligned to the genome.

Author(s)

Michael Stadler

See Also

bowtie in package Rbowtie used by getMappableRegions to align reads to the genome; bowtie_build
in package Rbowtie for indexing a genome.

Examples

if (requireNamespace("Rbowtie", quietly = TRUE)) {
library(Rbowtie)

genomefile <- system.file("extdata", "getMappableRegions", "hg19sub.fa", package = "swissknife")
indexdir <- tempfile()
indexpre <- "index"
indexname <- file.path(indexdir, indexpre)
idx <- bowtie_build(genomefile, indexdir)

mapgr <- getMappableRegions(genomefile, indexname, 50, quiet = FALSE)
print(mapgr)

}

14 labelCells

labelCells Assign labels to cells using known marker genes

Description

Given marker gene sets for cell types, identify cells with high expression of the marker genes
(positive examples), then use these cells to create a reference transcriptome profile for each cell type
and identify additional cells of each type using SingleR. These marker genes should specifically
expressed a single cell type, e.g. CD3 which is expressed by all T cell subtypes would not be
suitable for specific T cell subtypes.

Usage

labelCells(
sce,
markergenes,
fraction_topscoring = 0.01,
expr_values = "logcounts",
normGenesetExpressionParams = list(R = 200),
aggregateReferenceParams = list(power = 0.5),
SingleRParams = list(),
BPPARAM = SerialParam()

)

Arguments

sce SingleCellExperiment object.

markergenes Named list of character vectors with the marker genes for each cell types.
The marker genes must be a subset of rownames(sce).

fraction_topscoring

numeric vector of length 1 or the same length as markergenes giving the frac-
tion(s) of top scoring cells for each cell type to pick to create the reference
transcriptome profile.

expr_values Integer scalar or string indicating which assay of sce contains the expression
values.

normGenesetExpressionParams

list with additional parameters for normGenesetExpression.

aggregateReferenceParams

list with additional parameters for aggregateReference.

SingleRParams list with additional parameters for SingleR.

BPPARAM An optional BiocParallelParam instance determining the parallel back-end to
be used during evaluation.

labelCells 15

Value

A list of three elements named cells, refs and labels. cells contains a list with the numer-
ical indices of the top scoring cells for each cell type. refs contains the pseudo-bulk transcriptome
profiles used as a reference for label assignment, as returned by aggregateReference. labels
contains a DataFrame with the annotation statistics for each cell (one cell per row), generated by
SingleR.

Author(s)

Michael Stadler

See Also

normGenesetExpression used to calculate scores for marker gene sets; aggregateReference
used to create reference profiles; SingleR used to assign labels to cells.

Examples

if (requireNamespace("SingleR", quietly = TRUE) &&
requireNamespace("SingleCellExperiment", quietly = TRUE)) {

create SingleCellExperiment with cell-type specific genes
library(SingleCellExperiment)
n_types <- 3
n_per_type <- 30
n_cells <- n_types * n_per_type
n_genes <- 500
fraction_specific <- 0.1
n_specific <- round(n_genes * fraction_specific)

set.seed(42)
mu <- ceiling(runif(n = n_genes, min = 0, max = 30))
u <- do.call(rbind, lapply(mu, function(x) rpois(n_cells, lambda = x)))
rownames(u) <- paste0("g", seq.int(nrow(u)))
celltype.labels <- rep(paste0("t", seq.int(n_types)), each = n_per_type)
celltype.genes <- split(sample(rownames(u), size = n_types * n_specific),

rep(paste0("t", seq.int(n_types)), each = n_specific))
for (i in seq_along(celltype.genes)) {

j <- celltype.genes[[i]]
k <- celltype.labels == paste0("t", i)
u[j, k] <- 2 * u[j, k]

}
v <- log2(u + 1)
sce <- SingleCellExperiment(assays=list(counts=u, logcounts=v))

define marker genes (subset of true cell-type-specific genes)
marker.genes <- lapply(celltype.genes, "[", 1:5)
marker.genes

predict cell types
res <- labelCells(sce, marker.genes,

16 loadExampleData

fraction_topscoring = 0.1,
normGenesetExpressionParams = list(R = 50))

high-scoring cells used as references for each celltype
res$cells

... from these, pseudo-bulks were created:
res$refs

... and used to predict labels for all cells
res$labels$pruned.labels

compare predicted to true cell types
table(true = celltype.labels, predicted = res$labels$pruned.labels)

}

loadExampleData Access example data

Description

Make example data available, typically for use in teaching.

Usage

loadExampleData(name = "list", envir = globalenv(), verbose = TRUE)

Arguments

name An optional character scalar specifying the data set(s) to be made available. The
special name "list" (default) is used to print a data frame of available data sets
with descriptions. The special name "latest" will select the latest data set(s)
available.

envir specifies the environment in which the data should be made available. By de-
fault, envir = globalenv(), which creates the example data objects in the user
workspace. Possible alternative environment are for example parent.frame(),
which is the environment in which loadExampleData() was called.

verbose A logical scalar. If TRUE, report what is being selected and made available.

Value

A data.frame (invisibly) with one row for each dataset that was made available in the global
environment.

Author(s)

Michael Stadler

normGenesetExpression 17

Examples

loadExampleData()
loadExampleData("mycars")

normGenesetExpression Calculate normalized expression of a gene set

Description

Calculate normalized expression for a set of genes in each cell from a SingleCellExperiment,
using random sets of similarly expressed genes as background to account for cell quality and se-
quencing depth.

Usage

normGenesetExpression(
sce,
genes,
expr_values = "logcounts",
subset.row = NULL,
R = 200,
BPPARAM = SerialParam()

)

Arguments

sce SingleCellExperiment object.

genes character vector with the genes in the set. Must be a subset of rownames(sce).

expr_values Integer scalar or string indicating which assay of sce contains the expression
values.

subset.row Sample random genes only from these. If NULL (the default), the function will
sample from all genes in sce. Alternatively, subset.row can be a logical, inte-
ger or character vector indicating the rows (genes) of sce to use for sampling.
This allows for example to exclude highly variable genes from the sampling
which are likely expressed only in certain cell types.

R Integer scalar giving the number of random gene sets to sample for normaliza-
tion.

BPPARAM An optional BiocParallelParam instance determining the parallel back-end to
be used during evaluation.

Value

A numeric vector with normalized gene set scores for each cell in sce.

18 parsePkgVersions

Author(s)

Michael Stadler

Examples

if (require(SingleCellExperiment)) {
get sce
example(SingleCellExperiment, echo=FALSE)
rownames(sce) <- paste0("g", seq.int(nrow(sce)))

calculate gene set expression scores
markers <- c("g1", "g13", "g27")
scores <- normGenesetExpression(sce, markers, R = 50)

compare expression of marker genes with scores
plotdat <- cbind(scores, t(logcounts(sce)[markers,]))
cor(plotdat)
pairs(plotdat)

}

parsePkgVersions Parse R and R package versions from session informations

Description

The function parses the R version and R package versions from session information (created by
sessionInfo(), tested with R 3.6) in files provided in infiles. Two types of files are currently
supported:

• Rout: Files containing R console output (created by R CMD BATCH script.R output.Rout

• md: Files containing markdown output created by rmarkdown::render('input.Rmd', clean
= FALSE), which will keep the intermediate .md file.

Usage

parsePkgVersions(infiles)

Arguments

infiles Character vector with text files (extension must be either .Rout or .md), con-
taining session information to parse out.

Value

A list of lists with one element in the outer list for each R version, contianing an innter list with
elements files and packages.

plotBitScatter 19

Author(s)

Michael Stadler

Examples

f <- list.files(system.file("extdata", "parsePkgVersions",
package = "swissknife"),

full.names = TRUE)
parsePkgVersions(f)

plotBitScatter Create a bitmap-rendered plot.

Description

plotBitScatter is a wrapper around plot which renders the plot area as a bitmap (png), but keeps
all other elements (axes, labels, etc.) as vector elements. This is especially useful for keeping the
size of PDF files with scatter plots with many elements small, while retaining editability of axes.

Usage

plotBitScatter(
x,
y = NULL,
...,
densCols = TRUE,
colpal = c("#00007F", "blue", "#007FFF", "cyan", "#7FFF7F", "yellow", "#FF7F00", "red",

"#7F0000"),
xpixels = 1000,
ypixels = NULL,
pointsize = NULL

)

Arguments

x numeric vector with x-coordinates of points, or a two-column matrix with x-
and y- coordinates.

y numeric vector with y-coordinates of points (same length as x). Can be NULL,
in which case x must be a two-column matrix.

... any further arguments to be passed to plot

densCols logical(1). If TRUE and col is not given as an additional argument, then the
local density of points will be used as colors, using the palette spanned by the
colors in colpal.

colpal vector of colors defining the palette for automatic density-based coloring.

xpixels the number of pixels in the x dimension used for rendering the plotting area.

20 plotGeneRegion

ypixels the number of pixels in the y dimension used for rendering the plotting area. If
NULL (the default), will be calculated automatically as xpixels * par('pin')[2]
/ par('pin')[1], such that the aspect ratio of the current plotting region is ob-
served. This may not work (e.g. when using layout()), as this may result in
negative values returned by par('pin'). In that case, ypixels should be set
manually using this argument.

pointsize the size of points used for the png device when rendering the plot. If NULL (the
default), will be calculated automatically as 12 / graphics::grconvertX(par("pin")[1],
from = "inches", to = "device") * xpixels. This may not work (e.g. when
using layout()), as this may result in negative values returned by par('pin').
In that case, pointsize should be set manually using this argument.

Details

xpixels controls the resolution of the rendered plotting area. In order to keep circular plotting
symbols circlular (e.g. pch = 1), ypixels is automatically calculated using xpixels and the aspect
ratio of the current plotting area. If the plotting device is rescaled after calling plotBitScatter,
circular plotting symbols may become skewed.

Value

NULL (invisibly)

Author(s)

Michael Stadler

Examples

x <- rnorm(1000)
y <- rnorm(1000)
par(mfrow=c(1,2))
plotBitScatter(x, y, main = "bitmap")
plot(x, y, main = "default")

plotGeneRegion Plot gene region

Description

Visualize the gene model for a gene of interest, or for all genes in a provided region, and/or show
one or more coverage tracks based on bigwig file(s).

plotGeneRegion 21

Usage

plotGeneRegion(
gtf = "",
granges = NULL,
chr = "",
start = NA_real_,
end = NA_real_,
showgene = "",
bigwigFiles = "",
bigwigCond = "",
geneTrackTitle = "Genes",
transcriptIdColumn = "transcript_id",
geneIdColumn = "gene_id",
geneSymbolColumn = "gene_name",
lowerPadding = 0.15,
upperPadding = 0.05,
colorByStrand = FALSE,
featureColors = c(plusmain = "#0E14D0", minusmain = "#D0350E", plusother = "#9E9BEB",

minusother = "#DA907E"),
condColors = NULL,
scaleDataTracks = FALSE,
plotTitle = NULL,
...

)

Arguments

gtf Character scalar, path to gtf file (tested with Ensembl/Gencode files).

granges GRanges object, typically generated from a GTF file using the prepareGTF
function. This is an alternative to providing the link to the gtf file directly, and
will take precedence over the gtf argument if provided.

chr Character scalar, name of the chromosome to show.

start, end Numeric scalars, start and end position of the region to show.

showgene Character scalar, the gene ID/name to display. Will take precedence over posi-
tional range specification if provided.

bigwigFiles Named character vector, paths to bigwig files.

bigwigCond Named character vector, the grouping of the bigwig files (used for coloring of
the coverage tracks).

geneTrackTitle Character scalar, name of the gene track.

transcriptIdColumn

Character scalar, the column in the gtf file that contains the transcript ID. Passed
to prepareGTF.

geneIdColumn Character scalar, the column in the gtf file that contains the gene ID. Passed to
prepareGTF.

22 plotGeneRegion

geneSymbolColumn

Character scalar, the column in the gtf file that contains the gene symbol (if
available). Set to "" if not available (in which case the gene IDs will be used in
its place). Passed to prepareGTF.

lowerPadding, upperPadding
Numeric scalars, setting the amount of padding in the lower and upper range of
the plot, respectively. For example, a value of 0.05 will expand the range by
0.05 * (max coordinate - min coordinate) in the specified direction.

colorByStrand Logical scalar, determining whether gene features are colored by the annotated
strand.

featureColors Named character vector of length 4, with elements plusmain, minusmain, plusother,
minusother, giving the colors to use for the features if colorByStrand is TRUE.

condColors Either NULL or a named character vector (with the same names as the unique
values of bigwigCond), giving the colors to use for the coverage tracks if bigwigCond
is provided.

scaleDataTracks

Logical scalar, indicating whether the data tracks should be scaled to have the
same y-axis limits.

plotTitle Character scalar, the title of the final plot. If NULL (the default), it will be auto-
matically defined based on the displayed gene or region.

... Additional arguments to be passed to Gviz::plotTracks.

Details

The gene annotation can be provided either as a path to a gtf file, or as a GRanges object (generated
using the prepareGTF function to ensure compatibility). The region to display can be determined
either by specifying a gene (ID or symbol) or by specifying a viewing range (chromosome, start
and end positions).

Author(s)

Charlotte Soneson

Examples

if (requireNamespace("Gviz", quietly = TRUE)) {
gtffile <- system.file("extdata/plotGeneRegion/mm10_ensembl98.gtf",

package = "swissknife")
plotGeneRegion(gtf = gtffile,

showgene = "Tnfaip3")

bwf <- system.file("extdata/plotGeneRegion/mnase_mm10.bw",
package = "swissknife")

names(bwf) <- "bwf1"
plotGeneRegion(gtf = gtffile,

bigwigFiles = bwf,
chr = "chr10", start = 20000000, end = 20005000)

plotGeneRegion(bigwigFiles = bwf,
chr = "chr10", start = 20000000, end = 20005000)

plotPhasogram 23

bwf2 <- c(bwf, bwf)
names(bwf2) <- c("bwf1", "bwf2")
bwc2 <- c("c1", "c2")
names(bwc2) <- names(bwf2)
plotGeneRegion(gtf = gtffile, bigwigFiles = bwf2, bigwigCond = bwc2,

showgene = "Map3k5")
}

plotPhasogram Plot annotated phasogram.

Description

Plot phasogram and annotate it with estimated nucleosome repeat length (NRL).

Usage

plotPhasogram(x, hide = TRUE, xlim = NULL, verbosePlot = FALSE, ...)

Arguments

x numeric vector giving the counts of alignment distances (typically the output of
calcPhasogram.

hide If TRUE (the default), hide phasogram counts not used in the NRL estimate (mind
parameter from estimateNRL).

xlim numeric(2) with the x-axis (phase) limits in the first two plots (see Details). if
NULL (the default), the full range defined by x and hide will be used.

verbosePlot If TRUE, create three plots instead of just a single plot (see Details).

... Additional arguments passed to estimateNRL to control NRL estimation.

Details

The function will visualize an annotated phasogram. For verbosePlot=FALSE (the default), it will
create a single annotated plot. For verbosePlot=TRUE, it will create three plots (using par(mfrow=c(1,3))):

1. raw phase counts with de-trending and de-noising loess fits

2. residual phase counts with de-noising loess fit and detected peaks

3. linear fit to peaks and NRL estimation

Value

The return value from the call to estimateNRL (invisibly).

Author(s)

Michael Stadler

24 plotSelVarGenes

See Also

calcPhasogram to calculate the phasogram from alignments, estimateNRL to estimate nucleosome
repeat length

Examples

see the help for calcPhasogram() for a full example

plotSelVarGenes Plot Selected Variable Genes

Description

This function take the output from selVarGenes and plots the genes that have been selected to be
highly variable across the cells. It plot the log2 coefficient of variation as a function of the log mean.

Usage

plotSelVarGenes(
selVarGenes_list = NULL,
xlab = "logMean",
ylab = "logCV",
main = "Selected Variable Genes",
pch = 16,
col = "#BEBEBE40",
sel_col = "steelblue",
colByBin = FALSE,
asp = 1,
...

)

Arguments

selVarGenes_list

the output list from the selVarGenes function.

xlab label for x-axis.

ylab label for y-axis.

main title for plot.

pch point pch.

col point color.

sel_col point color of the selected variable genes.

colByBin if TRUE, color the genes by the bin they’ve been assigned to.

asp the y/x aspect ratio. Set to 1 when colByBin is TRUE.

... additional parameters for the plot function.

prepareGTF 25

Value

plot

Author(s)

Dania Machlab

Examples

if (requireNamespace("SingleCellExperiment", quietly = TRUE)) {
packages
library(SingleCellExperiment)

create example count matrix
... poisson distr per gene
mu <- ceiling(runif(n = 2000, min = 0, max = 100))
counts <- do.call(rbind, lapply(mu, function(x){rpois(1000, lambda = x)}))
counts <- counts + 1
... add signal to subset of genes (rows) and cells (columns)
i <- sample(x = 1:nrow(counts), size = 500)
j <- sample(x = 1:ncol(counts), size = 500)
counts[i, j] <- counts[i, j] + sample(5:10, length(i), replace = TRUE)

create SCE
sce <- SingleCellExperiment(list(counts = counts))

calculate sizeFactors
libsizes <- colSums(counts)
sizeFactors(sce) <- libsizes / mean(libsizes)

select variable genes
varGenes <- selVarGenes(sce)

plot
plotSelVarGenes(varGenes)
plotSelVarGenes(varGenes, colByBin=TRUE)

}

prepareGTF Prepare GTF file for use with plotGeneRegion

Description

This function sets the names of the transcript and gene ID columns of the gtf file to "transcript"
and "gene", removes version tags of the transcripts/genes and retains only the "exon" entries. The
purpose is to make the file amenable to plotting with Gviz, using the plotGeneRegion function.

26 readSampleTsvs

Usage

prepareGTF(
gtf,
transcriptIdColumn = "transcript_id",
geneIdColumn = "gene_id",
geneSymbolColumn = "gene_name"

)

Arguments

gtf Character scalar, path to gtf file (tested with Ensembl/Gencode files).
transcriptIdColumn

Character scalar, the column in the gtf file that contains the transcript ID.

geneIdColumn Character scalar, the column in the gtf file that contains the gene ID.
geneSymbolColumn

Character scalar, the column in the gtf file that contains the gene symbol (if
available). Set to "" if not available (in which case the gene IDs will be used in
its place).

Author(s)

Charlotte Soneson

Examples

gtf <- prepareGTF(gtf = system.file("extdata/plotGeneRegion/mm10_ensembl98.gtf",
package = "swissknife"))

readSampleTsvs Read sample tsv files from seqdata storage

Description

The function searches the provided seqdataDir for tsv files corresponding to the provided sampleIds
and returns a data.frame containing the metadata for all these samples.

Usage

readSampleTsvs(
seqdataDir = "/tungstenfs/groups/gbioinfo/seqdata",
sampleIds,
keepMulti = TRUE,
...

)

sampleControlElements 27

Arguments

seqdataDir Character scalar, the path to the directory containing the tsv files.

sampleIds Character vector with sample IDs, which will be matched against the file names
in seqDataDir. The sample IDs should not contain the .tsv suffix.

keepMulti Logical scalar, indicating whether to keep samples that match more than one tsv
file. If TRUE, these samples are represented by multiple rows in the table. If
FALSE, these samples are excluded. In any case, a warning will be generated,
listing the samples with multiple matching files.

... Additional arguments that will be passed to list.files, e.g. to make the search
case-insensitive or search recursively.

Value

A data.frame with metadata for the provided sampleIds.

Author(s)

Charlotte Soneson

Examples

if (requireNamespace("dplyr") && requireNamespace("tidyr")) {
print(readSampleTsvs(seqdataDir = system.file("extdata/readSampleTsvs",

package = "swissknife"),
sampleIds = c("readSampleTsvsEx1",

"readSampleTsvsEx2",
"readSampleTsvsEx3")))

}

sampleControlElements Sample control elements that match a target distribution.

Description

Randomly sample from a set of control (background) elements, such that the selected elements are
similarly distributed as a given set of target (foreground) elements.

Usage

sampleControlElements(
x,
idxTarget,
idxControl = NULL,
nbins = 50,
oversample = 1

)

28 selVarGenes

Arguments

x numeric vector (or list of numeric vectors). idxTarget and idxControl refer
to the elements of x. If x is a list, all elements must have the same length.

idxTarget numeric or logical vector specifying the elements in x that define the target
distribution to be matched by the control elements.

idxControl numeric or logical vector specifying the complete set of possible control ele-
ments in x (default: all that are not in idxTarget), from which a subset is to be
sampled.

nbins numeric(1) or numeric(length(x)) if x is a list, specifying the number of bins
to group the values of x into. Higher numbers of bins will increase the match to
the target distribution(s), but may fail if there are few elements to sample from
(will throw a warning).

oversample The number of control elements to sample for each target element.

Value

numeric vector with round(length(idxTarget) * oversample) elements, specifying the index
(positions) of the sampled control elements.

Author(s)

Michael Stadler

Examples

x <- c(runif(1000, min = 0, max = 10),
rnorm(200, mean = 5, sd = 1))

s <- sampleControlElements(x, idxTarget = 1001:1200, idxControl = 1:1000)
par(mfrow=c(2,2))
h <- hist(x, breaks = 20, main = "all")
hist(x[1:1000], breaks = h$breaks, main = "all control")
hist(x[1001:1200], breaks = h$breaks, main = "target")
hist(x[s], breaks = h$breaks, main = "sampled control")

selVarGenes Select Variable Genes in Single Cell RNA-seq

Description

This function selects the most variable genes from a SingleCellExperiment object using the plot
that displays the log2 coefficient of variation as a function of the log2 mean for all genes across all
the cells.

selVarGenes 29

Usage

selVarGenes(
data = NULL,
assay.type = "counts",
logPseudo = 1,
Nmads = 3,
minCells = 5,
minExpr = 1,
exclTopExprFrac = 0.01,
span = 0.2,
control = stats::loess.control(surface = "direct"),
nBins = 100,
nBinsDense = ceiling(nrow(data)/4),
...

)

Arguments

data SingleCellExperiment object or normalized count matrix containing the genes
as rows and cells as columns.

assay.type the type of assay to use if data is a SingleCellExperiment. It can be either
’counts’ or ’logcounts’. The default is ’counts’.

logPseudo pseudo-count to use when using the logcounts slot from the SingleCellExperiment
to transform back to normalized raw count space.

Nmads number of MADs beyond which genes are selected per bin.

minCells keep genes with minimum expression in at least this number of cells.

minExpr keep genes with expression greater than or equal to this in minCells cells in the
normalized count matrix.

exclTopExprFrac

the fraction of top expressed genes that will be excluded from the loess fit (value
between 0 and 1).

span span parameter for loess function.

control control parameters for loess function.

nBins number of bins or groups to place the points(genes) into.

nBinsDense number of bins or groups to use to place the points(genes) into when calculating
more accurate distance values to the curve from the loess fit.

... additional parameters for the loess function from the stats package.

Details

The function takes in a SingleCellExperiment object and calculates the normalized counts by
dividing the raw counts by the corresponding sizeFactors per cell, or a matrix of already normalized
counts. Only genes that have an expression greater than or equal to minExpr in at least minCells
cells will be kept. If assay.type is set to ’logcounts’, that assay is transformed back to the raw
normalized count space by performing 2^logcounts(data) - 1, under the assumption the logcounts
data is in log2 form and had a pseudocount of 1.

30 selVarGenes

The genes that vary most on the log2(coefficient of variation) vs log2(mean) plot of genes will be
selected. A loess fit is done on this plot and the distance (euclidean by default) each point has to the
curve is calculated in two steps.

In the first step, genes are assigned to bins by taking the minimum distance to the curve. By default
we select 100 points on the loess fit and calculate the distances each gene has to all those points on
the curve. Each gene is assigned to the point on the curve for which it has the shortest distance. In
the second step, more accurate distances to the curve are calculated by using a higher number of
points on the curve. Distances are calculated using the dist.matrix function.

Finally, for each bin, the most variable genes are selected using the more accurate distance mea-
sures. Genes that fall below the loess fit are assigned a negative sign and the genes that are Nmads
MADs away from the median are selected.

Value

a list of length 2:

• varGenes: vector containing the names of the most variable genes.

• geneInfo: data.frame with genes as rows and columns containing calculated measures:

– logMean: log2(mean) expression of genes across cells.
– logCV: log2(coefficient of variation) of genes across cells.
– pred_logCV: predicted log2(coefficient of variation) from loess fit.
– assigned_bin: bin each gene has been assigned to.
– distance: accurate distance measuses. Points below the loess fit get a negative sign.

Author(s)

Dania Machlab

Examples

if (requireNamespace("wordspace", quietly = TRUE) &&
requireNamespace("SingleCellExperiment", quietly = TRUE)) {
packages
library(SingleCellExperiment)

create example count matrix
... poisson distr per gene
mu <- ceiling(runif(n = 2000, min = 0, max = 100))
counts <- do.call(rbind, lapply(mu, function(x){rpois(1000, lambda = x)}))
counts <- counts + 1
... add signal to subset of genes (rows) and cells (columns)
i <- sample(x = 1:nrow(counts), size = 500)
j <- sample(x = 1:ncol(counts), size = 500)
counts[i, j] <- counts[i, j] + sample(5:10, length(i), replace = TRUE)

create SCE
sce <- SingleCellExperiment(list(counts = counts))

calculate sizeFactors

specificityScore 31

libsizes <- colSums(counts)
sizeFactors(sce) <- libsizes / mean(libsizes)

select variable genes
varGenes <- selVarGenes(sce, assay.type="counts")

plot
plotSelVarGenes(varGenes, colByBin=TRUE)
plotSelVarGenes(varGenes)

}

specificityScore Calculate gene-expression specificity scores.

Description

Calculate expression specificity scores for genes that quantify specific expression of a gene in
groups of samples (e.g. from different tissues).

Usage

specificityScore(
x,
method = c("tau", "TSI", "counts"),
group = NULL,
thresh = 0,
expr_values = "logcounts",
na.rm = FALSE

)

S4 method for signature 'matrix'
specificityScore(
x,
method = c("tau", "TSI", "counts"),
group = NULL,
thresh = 0,
expr_values = "logcounts",
na.rm = FALSE

)

S4 method for signature 'SummarizedExperiment'
specificityScore(
x,
method = c("tau", "TSI", "counts"),
group = NULL,
thresh = 0,
expr_values = "logcounts",

32 specificityScore

na.rm = FALSE
)

Arguments

x Expression data, either a matrix with expression values for genes (rows) in each
sample (columns), or a SummarizedExperiment or SingleCellExperiment
object containing such expression data in one of the assays (selected by expr_values).

method character scalar selecting the type of expression specificity score to be calcu-
lated. One of: "tau", "TSI", "counts". See "Details" for method-specific infor-
mation.

group character or factor of length ncol(x) that groups the measurements into
clusters or tissues, for which expression specificity scores are to be calculated.
If NULL (the default), each column of x is assumed to be its own group. If
multiple columns belong to the same group, these columns are first aggregated
(averaged) before score calculations.

thresh numeric scalar defining the expression threshold. Values greater than this thresh-
old are interpreted as expressed (used only for some of the methods, see "De-
tails").

expr_values Integer scalar or string indicating which assay of x contains the expression val-
ues, for x of type SummarizedExperiment or SingleCellExperiment. Ignored
if x is a matrix.

na.rm Logical scalar. If TRUE, NA values are excluded in the calculations.

Value

A numeric vector of length nrow(x) with gene scores.

Author(s)

Michael Stadler

References

For a review of tissue-specificity scores, see: "A benchmark of gene expression tissue-specificity
metrics" Nadezda Kryuchkova-Mostacci and Marc Robinson-Rechavi Brief Bioinform. 2017 Mar;
18(2): 205–214. doi: 10.1093/bib/bbw008, PMCID: PMC5444245, PMID: 26891983

Examples

x <- rbind(g1 = runif(5),
g2 = c(1, 0, 0, 0, 0),
g3 = c(.6, .1, .1, .1, .1))

specificityScore(x)
specificityScore(x, method = "TSI")
specificityScore(x, method = "counts", thresh = 0.5)

valueToColor 33

valueToColor Map numerical values to colors.

Description

valueToColor takes a numerical vector and maps each value to an R color string.

Usage

valueToColor(
x,
rng = range(x, na.rm = TRUE),
col = c("#5E4FA2", "#3288BD", "#66C2A5", "#ABDDA4", "#E6F598", "#FFFFBF", "#FEE08B",

"#FDAE61", "#F46D43", "#D53E4F", "#9E0142"),
NA.col = "lightgray",
alpha = NULL

)

Arguments

x numeric vector with values to be mapped to colors.

rng numeric(2) giving the range of values to be mapped to colors. By default, this
will be the range of finite values in x.

col vector with R colors defining the palette (must be a valid argument to col2rgb.

NA.col Single R color to use for NA values in x.

alpha NULL (default) or numeric(1) between 0 and 255, giving the alpha channel value
for the colors (0 = fully transparent, 255 = fully opaque). NULL will use fully
opaque colors (alpha = 255). alpha is ignored if col already contain colors
with defined alpha values.

Details

The values in [rng[1], rng[2]] will be linearly mapped to the color palette defined by col. Any
values in x less (greater) than rng[1] (rng[2]) will be assigned the same color as rng[1] (rng[2]).

Value

A character vector of the same length of x with R colors in hexadecimal string-encoded RGB
format.

Author(s)

Michael Stadler

See Also

colorRamp and rgb for the functions called by valueToColor.

34 weightedMeanByID

Examples

x <- rnorm(1000)
y <- rnorm(1000)
cols <- valueToColor(x + y)
plot(x, y, pch = 20, col = cols, main = "default")

weightedMeanByID Aggregate different rows assigned to the same ID by calculating a
weighted mean

Description

First row means are calculated to summarize across replicates identified by the groupCol in the
colData. Then different row means that are assigned to the same feature ID given by the idCol in
the rowData are summarized by calculating a weighted mean. This weighted mean is the sum of
the squared row means divided by the sum of the row means. If all row means are 0, they remain 0
in the output.

Usage

weightedMeanByID(
SE,
assay,
idCol = "GENEID",
groupCol = "group",
log2Transformed = TRUE

)

Arguments

SE a SummarizedExperiment object that contains an assay with values to be ag-
gregated, a colData column that assigns samples to their group and a rowData
column with IDs to indicate which rows to combine.

assay the name of the assay in the SummarizedExperiment object that should be ag-
gregated.

idCol the column name in the rowData of the SummarizedExperiment indicating the
feature ID.

groupCol the column name in the colData of the SummarizedExperiment indicating which
columns belong to the same group and should be averaged as replicates, before
the weighted mean is calculated across rows.

log2Transformed

a logical indicating whether values in the assay are log2 transformed. If
log2Transformed is TRUE, an exponential transformation will be applied be-
fore aggregating the values and another log transformation afterwards.

weightedMeanByID 35

Value

The output is a data.frame with one column for each of the unique names in the groupCol and
one row for each of the unique IDs in the idCol. The row and column names are the respective
unique values. The entries represent the weighted means for each unique feature ID. If all the input
values were NA, the aggregated value is also NA, while for all zero, the output remains zero. If
log2Transformed is true the output will be log2 transformed again.

Author(s)

Fiona Ross

Examples

set.seed(123)
meansRows <- sample(1:100, 10, replace = TRUE)
dat <- unlist(lapply(meansRows, function(m) {

rnorm(n = 5, mean = m, sd = 0.1*m)
}))
ma <- matrix(dat, nrow = 10, ncol = 5, byrow = TRUE)
IDs <- data.frame(ID = sample(c("A", "B", "C", "D"), size = 10, replace = TRUE))
Groups <- data.frame(group = c("Y","Y", "Z", "Z", "Z"))
mockSE <- SummarizedExperiment::SummarizedExperiment(

assays = list(counts = ma),
rowData = IDs,
colData = Groups)

weightedMeanByID(mockSE, "counts", idCol = "ID", log2Transformed = FALSE)

Index

addUtilsFunctions, 3
aggregateReference, 14, 15
annotateRegions, 4, 10

BiocParallelParam, 14, 17
bowtie, 13
bowtie_build, 13
BSgenome, 10, 12

calcAndCountDist, 5, 6, 7
calcPhasogram, 5, 6, 8, 9, 23, 24
col2hex, 7
col2rgb, 33
colorRamp, 33

DataFrame, 15
dist.matrix, 30

estimateNRL, 7, 8, 23, 24

findOverlaps, 4, 5

getGenomicTiles, 5, 9
getInsertSizeDistFromBam, 11
getMappableRegions, 12
GRanges, 4, 10, 13
GRangesList, 4, 10

labelCells, 14
loadExampleData, 16

nearest, 5
normGenesetExpression, 14, 15, 17

parsePkgVersions, 18
plotBitScatter, 19
plotGeneRegion, 20
plotPhasogram, 7, 9, 23
plotSelVarGenes, 24
prepareGTF, 25

readSampleTsvs, 26

rgb, 33

sampleControlElements, 27
scanBam, 12
selVarGenes, 28
SingleR, 14, 15
specificityScore, 31
specificityScore,matrix-method

(specificityScore), 31
specificityScore,SummarizedExperiment-method

(specificityScore), 31
swissknife (swissknife-package), 2
swissknife-package, 2

tileGenome, 10

valueToColor, 33

weightedMeanByID, 34

36

	swissknife-package
	addUtilsFunctions
	annotateRegions
	calcAndCountDist
	calcPhasogram
	col2hex
	estimateNRL
	getGenomicTiles
	getInsertSizeDistFromBam
	getMappableRegions
	labelCells
	loadExampleData
	normGenesetExpression
	parsePkgVersions
	plotBitScatter
	plotGeneRegion
	plotPhasogram
	plotSelVarGenes
	prepareGTF
	readSampleTsvs
	sampleControlElements
	selVarGenes
	specificityScore
	valueToColor
	weightedMeanByID
	Index

